This booklet has been produced for bilingual pupils whose first language is Thai. It may be used as a reference book or in bilingual support.
Contents1 Signs and Symbols
2 Area
3 Volume
4 Money
5 Lines
6 Angles
7 Triangles
8 Circles
9 Shapes
10 Graphs
11 Fractions
12 Decimals
13 Distance
14 Capacity
15 Weight
16 Time
17 Temperature
18 Instruments

## 1. Signs and Symbols

## Addition

add
plus
and
total of
increase by
sum of
altogether

Subtraction
subtract
minus
take away decrease by
reduce by
take away from
difference between

## Multiplication

multiply<br>times<br>by<br>product of<br>groups of<br>lots of

## Division

divide by
into
over
out of
share
each
part of
portion of
equals
is
is the same as
makes
has the same value as
is approximately about roughly close to
nearly
around
almost the same as
is more than
is greater than
is bigger than
is less than
is smaller than
is not as big as
$\geq \quad$ Bigger than or equal to
$\leq \quad$ Smaller than or equal to
\% Percent
Out of one hundred

## $\begin{array}{ll}\text { : } \quad \text { Ratio } \\ & \text { To }\end{array}$

$\beta$ Clockwise


Anticlockwise
Counter clockwise
$\sqrt{ }$
Root
$\infty$ Infinity

## 2. Area

Area means how much space a flat (two dimensional) shape takes up. We measure area in squares e.g.

Square centimetres $\left(\mathrm{cm}^{2}\right)$


$$
\begin{aligned}
\text { Area } & =\text { length } \times \text { width } \\
& =4 \mathrm{~cm} \times 2 \mathrm{~cm} \\
& =8 \mathrm{~cm}^{2}
\end{aligned}
$$

A cube has six faces. The surface area of a cube may be drawn like this:-


## 3. Volume

Volume means how much space a solid (3 dimensional) shape takes up. We measure volume in cubes e.g.

## Cubic centimetre ( $\mathrm{cm}_{3}$ )

Volume $=$ length $\times$ width $\times$ height


This cube is made of eight centimetre cubes.
Its volume is $8 \mathrm{~cm}_{3}$

## 4. Money

These are the coins used in Britain:-


One pound ( $£ 1$ ) is 100 pence.
These are the notes in use:-


We usually write prices like this:-
£2.99 £3.25

## 5. Lines

Straight line<br>Curved line

Vertical line


Parallel lines


Perpendicular lines
(right angle)


## 6. Angles



These two lines
meet at an angle.
An angle is
measured in degrees $\left(^{\circ}\right.$ )

This is a rightangle.
It is $90^{\circ}$.


A straight line is made of two right angles.
It is $180^{\circ}$


A circle is made of four right angles.
It has $360^{\circ}$


An angle that measures less than $90^{\circ}$ is called an acute angle


An angle which measures more than $90^{\circ}$ is called an obtuse angle.

An angle that measures more than $180^{\circ}$ is called a reflex angle.

## 7. Triangles

A triangle is a shape with 3
 straight sides. It also has 3 angles.

The points of a triangle are called the vertices.

## There are different types of triangles :-

## Isosceles



Two sides are the same length.
The two angles at the base are equal

## Equilateral



All three angles are equal.

All three sides are the same length.

## Right-angle



One of the angles measures $90^{\circ}$.

The longest side is called the hypotenuse

The angles of a triangle always add up to $180^{\circ}$.

## 8. Circles



The perimeter of a circle is called the circumference.


Half of a circle is called a semicircle.


Any line from the centre of a circle to the circumference is called the radius.


A straight line from one side of a circle to the other side through the centre is the diameter.

The diameter is twice the length of the radius.


Part of the circumference is an arc. The straight line $a b$ is a chord. The shaded area is a segment


An area of a circle enclosed by two radii and an arc I a sector


A line which touches the circumference at only one point is a tangent


Circles which have the same centre are called concentric circles

## 9. Shapes



## Square

It has four equal sides and four right angles


## Rectangle

It has four right angles and opposite sides are equal


## Parallelogram

Opposite sides are parallel


## Quadrilateral

Any shape with four straight sides


# Pentagon 

It has five sides and five angles


## Hexagon

It has six sides and six angles


## Trapezium

One set of sides is parallel

## Ellipse

This is shaped like an egg

## 10. Graphs



A graph has a vertical axis ( $y$ ) and a horizontal axis ( $x$ ).

There are many different types of graphs or charts:-



A graph plotting points


## A bar chart or block graph



A pictogram


A column graph


A pie-chart is a circle divided into different sectors

## 11. Fractions

A fraction is a part of a whole.
$4 / 5$ is a fraction. It may be shown like this:-


$$
4 / 5
$$

$1 / 5$

Here is another fraction: $2 / 3$

This means two parts out of three. We say twothirds.

The number at the top is called the Numerator.

The number at the bottom is called the

Denominator.

This is a mixed number $3 \frac{1}{2}$

It is made of a whole number and a fraction. I $\dagger$ may be written as an Improper Fraction:-

$$
\begin{array}{cc}
3 \frac{1}{2} & =7 / 2 \\
\text { (mixed } & \text { (improper } \\
\text { number) } & \text { fraction) }
\end{array}
$$

## Equivalent (equal) Fractions



## 12. Decimals

Parts of a whole number can also be written as decimals:
$1 / 10$ is the same as 0.1
$\frac{1}{4} \quad$ is the same as 0.25
$41 / 5$ is the same as 4.2

## Percentages

$1 \%$ is one in every 100
$1 \%$ is 1 p in every pound
$1 \%$ is $1 / 100$
$1 \%$ is 0.01

## Conversion Table

|  | Fraction | Decimal | Percentage |
| :--- | :---: | :---: | :---: |
| Half | $\frac{1}{2}$ | 0.5 | $50 \%$ |
| Quarter | $\frac{1}{4}$ | 0.25 | $25 \%$ |
| Three- <br> Quarters | $\frac{3}{4}$ | 0.75 | $75 \%$ |
| One tenth | $1 / 10$ | 0.1 | $10 \%$ |
| One fifth | $1 / 5$ | 0.2 | $20 \%$ |
| One third | $1 / 3$ | 0.33 | $33.33 \%$ |
| Two thirds | $2 / 3$ | 0.66 | $66.66 \%$ |
| One eigth | $1 / 8$ | 0.125 | $12.5 \%$ |

## 13. Distance

Metric System
mm - millimetre
cm - centimetre
m -metre
km - kilometre
$10 \mathrm{~mm}=1 \mathrm{~cm} \quad 100 \mathrm{~cm}=1 \mathrm{~m} \quad 1000 \mathrm{~m}=1 \mathrm{~km}$

## Imperial System

abbreviations

$$
\begin{aligned}
& \text { in - inch } \\
& \text { ft-foot } \\
& \text { yd - yard } \\
& \text { mile - mile }
\end{aligned}
$$

$12 \mathrm{ins}=1 \mathrm{ft} \quad 3 \mathrm{ft}=1 \mathrm{yd} \quad 1760 \mathrm{yds}=1 \mathrm{mile}$

Conversions
$2 \frac{1}{2} \mathrm{~cm}=1 \mathrm{in} \quad .9 \mathrm{~m}=1 \mathrm{yd} \quad 1 \mathrm{~km}=\frac{5}{8}$ mile

## 14. Capacity

## Metric System

$$
\begin{aligned}
& \mathrm{ml} \text { - millilitre } \\
& \mathrm{cc} \text {-cubic centimetre } \\
& \text { I./li-litre } \\
& 1 c c=1 \mathrm{ml} \quad 11=1000 \mathrm{ml}
\end{aligned}
$$

## Imperial System

fl.oz - fluid ounce
pt. - pint
gal. - gallon
$20 \mathrm{floz}=1 \mathrm{pt} \quad 8 \mathrm{pts}=1 \mathrm{gal}$

Conversions

1 litre $=1 \frac{3}{4}$ pints 1 gal $=4 \frac{1}{2}$ litres

## 15. Weight

Metric System

```
mg. - milligram
g. - gram
kg. - kilogram (kilo)
\(1000 \mathrm{mg}=1 \mathrm{~g} \quad 1000 \mathrm{~g}=1 \mathrm{~kg}\)
    \(1000 \mathrm{~kg}=1\) tonne
```


## Imperial System

oz. - ounce
lb. - pound
st. - stone

$$
16 o z=1 \mathrm{lb} \quad 14 \mathrm{lb}=1 \mathrm{st}
$$

Conversions

$$
1 \mathrm{oz}=28 \mathrm{~g} \quad 1 \mathrm{~kg}=21 / 5 \mathrm{lb}
$$

## 16. Time

## Units of Time

$$
\begin{array}{ll}
\text { sec-second } & \text { wk-week } \\
\text { min-minute } & \begin{array}{l}
\text { yr-year } \\
\text { p.a. - per annum }
\end{array} \\
\mathrm{hr} \text { - hour } & 60 \mathrm{mins}=1 \mathrm{hr} \\
60 \mathrm{sec}=1 \mathrm{~min} & 7 \text { days }=1 \mathrm{wk} \\
24 \mathrm{hrs}=1 \text { day } & 12 \text { months }=1 \mathrm{yr}
\end{array}
$$

## Calendar Months

30 days has September,
April, June and November.
All the rest have 31,
Except February all alone
Which has 28 days clear
And 29 each leap year.
17. Temperature


- $100^{\circ}$ boiling point
- $37^{\circ}$ body temperature
- $0^{\circ}$ freezing point

Temperature is usually measured in ${ }^{\circ} \mathrm{C}$
(degrees Celsius).
Sometimes ${ }^{\circ} \mathrm{F}$ (Fahrenheit) is used

$$
\begin{aligned}
& 0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F} \\
& 100^{\circ} \mathrm{C}=212^{\circ} \mathrm{F}
\end{aligned}
$$

## 18. Instruments

Ruler


Set square


## Protractor




